

National Institute for Public Health and the Environment

The Dutch exposimeter study: Developing an Activity Exposure Matrix (EMF – AEM)

John FB Bolte*, M Pruppers, J Kamer, G van der Zande, C Schipper, S Fleurke, T Kluwer, H Kromhout and I van Kamp – Paris, 17 December 2009

Goal of EMF-AEM project

- In Dutch national EMF&Health Programme by ZonMw
- Characterise "true" exposure during everyday activities in 13 frequency bands
- Develop a tool to select highly vs. lowly exposed groups without actually measuring
- Preparation future epidemiological studies
- Collaboration:

John Bolte

Stages of EMF-AEM project

- 1. Calibration and Uncertainties
- 2. Scenario driven measurements temporary workers
 - carrying RF- and ELF-exposimeter, GPS and diary
 - building Activity Exposure Matrix (AEM) for 30 common everyday activities 1 ELF magnetic and 12 RF-communication bands
- 3. Population driven survey on volunteers (N=100)
 - testing AEM and questionnaire on daily activity pattern for prediction qualities
- A Cross-sectional study on aspecific effects

Cohort study on hard end effects В

Universiteit Utrecht

The measurement set

ZonMw

Whist Lab, Paris, -17 December 2009

ELF measurements in 1 band

• 8 EMDEX Lite

- Bandwidth 40 1000 Hz
- Sampling interval 4 s 20 min
- Dimensions 1.0" x 2.4" x 4.7" (2.5 x 6.0 x 12.0 cm)
- Weight 6 ounces (170 grams)
- Data Memory 512Kb
- Meas. Accuracy ±4 %
- Powerlines, powergrid, household appliances, tools

RF measurements

 11 EME Spy (12 bands) Satimo (formerly known as Antennessa)

	MECHANICA			
Dimensions			195 x 95.4 x 75 mm (L x l x h)	
Weight		450 g		
Ingress protection			IP 43	
	MAIN CH	ARACTERIS	TICS	
Frequency band		FM, TV3, TETRA, TV4&5, GSM Tx, GSMRx, DCS Tx, DCS Rx, DECT, UMTS Tx, UMTS Rx, WiFi		
	FM	± 1,3 dB		Not included:
	TV3	± 1,3 dB		
	TETRA		± 1,2 dB	GSM-r 876.1 MHz
	TV4&5		± 0,9 dB	
	GSM Tx		± 1,8 dB	Mariphone 156 MHz
Axial	GSM Rx		± 0,8 dB	
isotropy	DCS Tx		± 1,4 dB	Amateurradio 146 MHz
	DCS Rx		± 1,0 dB	Amateurraulo 140 Miriz
	DECT		± 1,3 dB	
	UMTS Tx		± 0,8 dB	etc
	UMTS Rx		± 1,8 dB	
	WiFi		± 3,3 dB	
Lower detection limit		0,05 V/m		
Upper detection limit			10 V/m	

Upper Unstitute is Health Extrement

Measurement uncertainties using the EME SPY 121

John Bolte

Correction factors: what to do?

• Goal:

- Equalise differences between EME Spy units (necessary for contrast between activities)
- Equalise differences between frequency bands (less necessary, only for "true" exposure)

• Based on:

- Out of band response
- Precision within band
- Response at middle of band
- Multiple signals / sources
- Isotropy / influence of body
- Polarisation
- Do these features change over time???

Calibration GHz Transverse ElectroMagnetic (GTEM) cell

Do all devices measure the same field?

John Bolte

Variability per unit ©

Too low: UMTStx, DECT, DCSrx, DCStx

Correction factors (input/response) typically 0.7 – 1.5

National Institute for Public Health and the Environment

John Bolte

unit 1: broke, repaired unit 2: tends to give higher registrations than rest

Whist Lab, Paris, – 1 17 December 2009

Variability EME Spy 120 (France)

Variability within frequencyband ©

Too low: UMTStx, DECT, DCSrx, DCStx

John Bolte

John Bolte

Whist Lab, Paris, – 17 December 2009

Out-of-band response in field ⁽²⁾/⁽³⁾

John Bolte

Whist Lab, Paris, – 17 December 2009

Open Area Test Site (OATS)

John Bolte

Whist Lab, Paris, – 17 December 2009

Influence of the body (linear V/m scale)

unit 7

John Bolte

Whist Lab, Paris, – 17 December 2009

Concluding remarks

• Correction factors for different response of 11 RF exposimeters necessary, based on:

- Out of band response	test	software filter ☺/⊗	
- Precision within band	f _{in} =unknown	error margin	$\overline{\mathfrak{S}}$
- Influence of body	motion	average?	☺/⊗
- Polarisation	reflections	average?	☺/⊗
- Multiple signals / sources	no detect	unknown erro	r 🛞 🛞
- Response & linearity	constant factor	input/respons	e 🙂

• Do these features change over time???

Measurements & observations

John Bolte

Whist Lab, Paris, – 17 December 2009

Magnetic B-field for activities in city centre

Magnetic B-field in and around Utrecht city

tional Institute Public Health d the Environment

John Bolte

Whist Lab, Paris, – 17 December 2009

Temporal differences B-field: samedocation, differentotime45

John Bolte

ZonMw

Whist Lab, Paris, – 22 17 December 2009

GSM, **DCS** and **UMTS** basestations

onal Institute Public Health the Environment

John Bolte

Whist Lab, Paris, – 17 December 2009

FM and TV broadcasting

al Institute bic Health e Environment

Some preliminary outcomes on the scenario driven survey ...

John Bolte

Whist Lab, Paris, – 17 December 2009

Spatial differences: GSMrx transportation

Built up area - Rural - Centre

John Bolte

Whist Lab, Paris, – 17 December 2009

Stagellb: Mean GSMrx

John Bolte

Whist Lab, Paris, – 17 December 2009

Stage III: Fieldwork

- September 2009 January 2010
- N=100 selected in Amsterdam and surroundings
- screened for **diversity**:
 - sex
 - Living environment and housing
 - city centre, city, city outskirts, village centre, village outskirts
 - single, chained, appartment building
 - employed / unemployed
 - main mode of transportation
 - Age: 18-24, 25-35, 35-45, 45-55, 55-65, 65-

Concluding Remarks

- Correction factors due to calibration of the EME Spy are necessary, range for E-field: 0.7 – 1.5
- Body shielding should be taken into account and can lead to 2 dB measurement error
- Contrasting everyday activities can be found,
 - main differences RF indoor outdoor, highest at station
- Temporal differences day night
- Spatial differences Centre Built-up area Rural
 - Centre / Rural GSMrx: factor 5

Acknowledgements

- The EMF-AEM team at RIVM, Radio Communications Agency and Utrecht University
- The Netherlands organisation for health research and development (ZonMw) for funding this study under the Dutch national Electromagnetic Fields & Health Programme

John Bolte

Stage IIb: dayscenarios & routes

DayScenario 2: Rotterdam - Den Haag - late

Start time: 12.00u

End time: 21.00u

The scenario starts at 12.00u at Utrecht Central station. Preferred is to come to the station by bike, because you have to cycle around in the evening. If it is not possible to bring your bike, then rent a bike at the station.

•12.03 – 12.33u Take the train at Utrecht Central Station to Rotterdam Alexander (platform (railway) 9a)

•12.33 – 12.50u Walk around at the station and walk to the subway (Do not forget to buy an OV-chipkaart in this time also!)

•12.51 – 13.20u Take the subway at12.51u in the direction of Rotterdam Central There is a transfer/switch-over at metrostation(subwaystation) Beurs (see <u>routedescription</u> <u>1</u>).

•13.20 - 13.35u Walk out of Rotterdam Central Station in the direction of Schouwburgplein and enter café Floor (Schouwburgplein 28, see <u>routedescription 2</u>).

John Bolte

Stage IIb: dayscenarios & routes

John Bolte

Whist Lab, Paris, – 17 December 2009

Future plans

- Indoor measurements at home of volunteers
- Calculate exposure model Buergi similar to uergi et al. 2009 and Frei et al. 2009
- Prediction model of exposure
- Application of Activity Exposure Matrix in:
 - Cross-sectional study on aspecific effects (RIVM)
 - Cohort study on hard endpoints (Utrecht University)

